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Abstract. The problem of computation of initial 

conditions and inputs for given outputs of standard and 
positive discrete-time linear systems has been formulated 
and solved. Necessary and sufficient conditions for 
existence of solution to the problem have been 
established. It has been shown that there exist the unique 
solutions to the problem only if the pair (A,C) of the 
system is observable. 
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1. Introduction 
Inputs, state variables, and outputs in positive 

systems take only non-negative values. Examples of 
positive systems are industrial processes involving 
chemical reactors, heat exchangers and distillation 
columns, storage systems, compartmental systems, water 
and atmospheric pollution models. A variety of models 
having positive linear behavior can be found in 
engineering, management science, economics, social 
sciences, biology and medicine, etc. An overview of 
state of the art in positive linear theory is given in the 
monographs [2, 5]. 

The notions of controllability and observability and 
the decomposition of linear systems have been introduced 
by Kalman [8, 9]. Those notions are the basic concepts of 
the modern control theory [1, 7, 10, 11, 4]. They were also 
extended to positive linear systems [2, 5]. 

The decomposition of the pair (A,C) and (A,B) of the 
positive discrete-time linear systems was addressed in [3].  

In this paper the problem of computation of initial 
conditions and inputs for given outputs of standard and 
positive discrete-time linear systems will be formulated 
and solved. Necessary and sufficient conditions for 
existence of solutions to the problem will be established. 

The paper is organized as follows. In section 2 the 
problem is formulated. The main results of the paper are 
given in section 3, where the necessary and sufficient 
conditions for existence of solutions to the problem for 
standard and positive systems are established. 
Concluding remarks are given in section 4. 

The following notation will be used: ℜ  - the set of 
real numbers, mn×ℜ  - the set of mn ×  real matrices, 

mn×
+ℜ  - the set of mn ×  matrices with nonnegative 

entries and 1×
++ ℜ=ℜ nn , nI - the nn ×  identity matrix. 

2. Preliminaries 
Consider the linear discrete-time systems 

 ,...}1,0{,1 =∈+= ++ ZiBuAxx iii , (2.1a) 

 iii DuCxy += , (2.1b) 

where ,n
ix ℜ∈  m

iu ℜ∈ , p
iy ℜ∈  are the state, input 

and output vectors and ,nnA ×ℜ∈  mnB ×ℜ∈ , npC ×ℜ∈ , 
mpD ×ℜ∈ . Without decrease of generality it is assumed 

that 

 mB =rank  and pC =rank . (2.2) 
Definition 2.1. [2, 5] The system (2.1) is called 

(internally) positive if and only if ,n
ix +ℜ∈  and 

,p
iy +ℜ∈  +∈ Zi  for every ,0

nx +ℜ∈ , and any input 

sequence ,m
iu +ℜ∈  +∈ Zi . 

Theorem 2.1. [2, 3] The system (2.1) is (internally) 
positive if and only if 

mpnpmnnn DCBA ×
+

×
+

×
+

×
+ ℜ∈ℜ∈ℜ∈ℜ∈ ,,, . (2.3) 

The problem under considerations can be stated as 
follows. 

Given the sequence of inputs nyyy ,...,, 10  compute 
the initial condition 0x  and input sequence nuuu ,...,, 10  
for the standard and positive system (2.1). 

The problem can be considered as a generalization 
of the observability problem of standard and positive 
discrete-time linear systems [1, 4, 7, 11]. 

The following two cases will be considered 
separately for standard and positive systems: 

Case 1. The matrix D=0. 
Case 2. The matrix D≠0. 

3. Problem solution 
3.1. Standard systems 
Substituting the solution of the equation (2.1a) 

 
+

−

=

−− ∈+= ∑ ZiBuAxAx
i

k
k

kii
i ,

1

0

1
0  (3.1) 
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into (2.1b) we obtain 

 +

−

=

−− ∈++= ∑ ZiDuBuCAxCAy i

i

k
k

kii
i ,

1

0

1
0 . (3.2) 

If 0=D  then using (3.2) for 1,...,1,0 −= ni  we 
obtain 
 yHz =  (3.3a) 
where 

.,

,

...

...
0...
0...0
0...00

1

2

1

0

)1(

2

1

0

0

))1((

321

2

pn

n

mnn

n

mnnpn

nnn

y

y
y
y

y

u

u
u
x

z

CBBCABCACA

CBCABCA
CBCA

C

H

ℜ∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ℜ∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ℜ∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−+

−

−+×

−−−

MM

MMMM

              (3.3b) 
If 0≠D  then using (3.2) for 1,...,1,0 −= ni  we 

obtain 
 yzH =  (3.4a) 

where 

.

,0
0
0

...

...
0...
0...
0...0

)1(

2

1

0

0

)1(

321

2

nm

n

nmpn

nnn

u

u
u
x

z

DCBBCABCACA

CBCABCA
DCBCA

DC

H

+

−

+×

−−−

ℜ∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ℜ∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

M

MMMMM

    (3.4b) 
In the proof of the main result of this paper the 

following well-known Kronecker-Cappely Theorem will 
be used [6]. 

Theorem 3.1. The equation (3.3a) has a solution z 
for given H and y if and only if 
 HyH rank][rank = . (3.5) 

Case 1. 0=D . 
Theorem 3.2. Let 0=D and npmnn ≥−+ )1( . 

Then the equation (3.3a) has a solution 2100 ,...,,, −nuuux  
for any given sequence 110 ,...,, −nyyy  if and only if the 
matrix H has full row rank, i.e. 
 pnH =rank . (3.6) 

Moreover, the equation has the unique solution 

 yHz 1−=  (3.7) 

if npmnn =−+ )1(  and many solutions if 
npmnn >−+ )1( . 

Proof. If (3.6) holds then the condition (3.5) is 
satisfied for any vector y. If additionally 

npmnn =−+ )1(  the matrix H is square and invertible. 
In this case the unique solution of (3.3a) is given by 
(3.7). If  npmnn >−+ )1(  the equation (3.3a) has many 
solutions. □ 

Theorem 3.3. Let 0=D  and mnnnp )1( −+> . 
Then the equation (3.3a) has a solution 2100 ,...,,, −nuuux  
for a given sequence 110 ,...,, −nyyy  if and only if the 
condition (3.5) is met. Moreover, the equation has the 
unique solution if 
 mnnH )1(rank −+=  (3.8) 
and it has many solutions if 
 mnnH )1(rank −+<  (3.9) 

Proof. By Theorem 3.1 the equation (3.3a) has a 
solution 2100 ,...,,, −nuuux  for a given output sequence 

110 ,...,, −nyyy  if and only if the condition (3.5) is 
satisfied. The solution is unique if (3.8) is met since the 
matrix H has full column rank. Presume that the equation 
(3.3a) has two different solutions 1z  and 2z  satisfying 

yHz =1  and yHz =2 . Then 0)( 21 =− zzH  and 
021 =− zz  since H has full column rank. If (3.5) and 

(3.9) hold then the equation (3.3a) has many solutions.  
Remark 3.1. Note that the first matrix column  

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−1nCA

CA
C

M
 (3.10) 

of H is the observability matrix of the system (2.1). The 
matrix (3.10) has full column rank if and only if the pair 

),( CA  is observable. Therefore, the equation (3.3a) has 
unique solution only if the pair ),( CA  is observable. 

Example 3.1. Consider the system (2.1) with the 
matrices 

 ]0[],01[,
0
1

,
01
10

==⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= DCBA .(3.11) 

Compute the initial condition ⎥
⎦

⎤
⎢
⎣

⎡
=

20

10
0 x

x
x  and the 

input 0u  of the system for the given output sequence 

10, yy . 
In this case we have 2=n , 1== pm , 

23)1( =>=−+ npmnn  and the matrix 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

110
0010

CBCA
C

H  

has the full row rank. 
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The equation (3.3a) has the form 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

1

0

0

20

10

110
001

y
y

u
x
x

 (3.12) 

and it has many solutions for any sequence 10, yy . From 
(3.12) we have 

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

01

0

20

10

uy
y

x
x

 for arbitrary 0u  

оr                  ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

201

0

0

10

xy
y

u
x

 for arbitrary 20x . 

Example 3.2. Consider the system (2.1) with the 
matrices 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0

,
100
001

,
1
0
0

,
001
100
010

DCBA .(3.13) 

In this case we have 3=n , 1=m , 2=p , 
5)1(6 =−+>= mnnnp  and the matrix 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10010
00100
01001
00010
00100
00001

0
00

2 CBCABCA
CBCA

C
H (3.14) 

has full column rank. Note that the second and the fifth 
rows of (3.14) are identical. Therefore, by Theorem 3.3 
the equation (3.3a) for (3.14) has a unique solution if and 
only if 2102 yy = , where iky  is the k-th component of 
the vector 2,1;2,1,0, == kiyi . 

Omitting the second row of (3.14) we obtain the 
equation 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

01

1

0

0
€

y
y
y

u
u
x

H  (3.15) 

where 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10010
00100
01001
00010
00001

€H  (3.16) 

is nonsingular, 1€det =H . The equation (3.15) and also 
(3.14) has the unique solution 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

1122

0111

21

11

01

2

1

01
1

1

0

0
€

yy
yy

y
y
y

y
y
y

H
u
u
x

 (3.17) 

Case 2. 0≠D . 

Theorem 3.4. Let 0≠D  and pm ≥+1 . Then the 
equation (3.4a) has a solution 1100 ,...,,, −nuuux  for any 
given output sequence 110 ,...,, −nyyy  if and only if the 

matrix H  has full row rank, i.e. 
 pnH =rank . (3.18) 

Moreover, the equation has the unique solution 
 yHz 1−=  (3.19) 
if pm =+1  and many solutions if pm >+1 . 

Proof is similar to the proof of Theorem 3.2. 
Theorem 3.5. Let 0=D  and 1+> mp . Then the 

equation (3.4a) has a solution 1100 ,...,,, −nuuux  for a 
given output sequence 110 ,...,, −nyyy  if and only if the 
condition 
 mnnH )1(rank −+=  (3.20) 
is met. Moreover, the equation has the unique solution if  
 mnnH )1(rank −+<  (3.21) 

Proof is similar to the proof of Theorem 3.3. 
Remark 3.2. The equation (3.4a) has unique 

solution only if the pair ),( CA  is observable. 
Example 3.3. Consider the system (2.1) with the 

matrices A, B, C given by (3.13) and ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

D . 

In this case the matrix  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

110010
000100
011001
000010
001100
000001

0
00

2 CBCABCA
CBCA

C
H (3.22) 

is nonsingular. Using (3.19) we obtain 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−++
−−+
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

211211220201

02012112

2102

21

11

01

2

1

0

1

110010
000100
011001
000010
001100
000001

yyyyyy
yyyy
yy

y
y
y

y
y
y

z

 (3.23) 

3.2. Positive systems 
Case 1. 0=D . 
From Definition 2.1 and Theorem 2.1 that for 

positive systems  
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nmmnnpn

nmpnmnnpn

zzy

HH
)1()1(

)1())1((

,,

,,
+

+
−+

++

+×
+

−+×
+

ℜ∈ℜ∈ℜ∈

ℜ∈ℜ∈
. (3.24) 

it follows. 
Definition 3.1. [5] A square matrix A (a vector) is 

called the monomial matrix (vector) if its every row and 
its every column contains only one positive entry (one 
positive component) and the remaining entries 
(components) are zero. 

Lemma 3.1. [5] The inverse matrix 1−A  of a matrix 
nnA ×

+ℜ∈  is the positive matrix nnA ×
+

− ℜ∈1  if and only 
if A is monomial matrix. 

Theorem 3.6. Let 0=D  and npmnn ≥−+ )1( . 

Then the equation (3.3a) has a solution ,0
nx +ℜ∈  

,m
iu +ℜ∈  2,...,1,0 −= ni  for any given output sequence 

,p
iy +ℜ∈  1,...,1,0 −= ni  if and only if the matrix 

))1(( mnnpnH −+×
+ℜ∈  contains np linearly independent 

monomial columns. 
Moreover, the equation has the unique solution 

 yHz m
1−=  (3.25) 

if the matrix H contains only one monomial matrix mH  
and many solutions if it contains many such monomial 
matrices. 

Proof. The equation (3.3a) has a solution for any 
given sequence 110 ,...,, −nyyy  if and only if the condition 
(3.6) is met. By Lemma 3.1 the solution is nonnegative 

,0
nx +ℜ∈  ,m

iu +ℜ∈  2,...,1,0 −= ni  for a nonnegative 

sequence ,p
iy +ℜ∈  1,...,1,0 −= ni  if and only if the 

matrix H contains at least one monomial matrix 
pnpn

mH ×
+ℜ∈ . The solution (3.25) is unique if the 

matrix H contains only one monomial matrix and many 
solutions if it contains more then on such monomial 
matrices. □ 

Theorem 3.7. Let 0=D  and mnnnp )1( −+> . 

Then the equation (3.3a) has a solution ,0
nx +ℜ∈  

,m
iu +ℜ∈  2,...,1,0 −= ni  for any given output sequence 

,p
iy +ℜ∈  1,...,1,0 −= ni  if and only if the following 

conditions are satisfied: 
1) the condition (3.5) is met, 
2) the matrix ))1(( mnnpnH −+×

+ℜ∈  contains 
mnn )1( −+  linearly independent monomial 

rows. 
Moreover, the equation has the unique solution 

 yHz m
1~ −=  (3.26) 

where mH~  is the monomial matrix consisting of linearly 
independent monomial rows of the matrix H. 

Proof. For mnnnp )1( −+>  the equation (3.3a) has 
a solution if and only if the condition (3.5) is met. By 
Lemma 3.1 the solution is nonnegative ,0

nx +ℜ∈  

,m
iu +ℜ∈  2,...,1,0 −= ni  for a nonnegative sequence 

,p
iy +ℜ∈  1,...,1,0 −= ni  if and only if the matrix H 

contains one monomial matrix 
))1(())1((~ mnnmnn

mH −+×−+
+ℜ∈ . The solution (3.26) is 

unique since the matrix H contains only one monomial 
matrix. ϒ 

Remark 3.3. The equation (3.3a) has the unique 
solution (3.26) only if the positive pair ),( CA  is 
observable. In this case the observability matrix (3.10) 
contains n linearly independent monomial rows. 

Example 3.4. Consider the positive system (2.1) 
with the matrices (3.11). In this case the matrix 

 32

110
0010 ×

+ℜ∈⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

CBCA
C

H  (3.27) 

contains two linearly independent monomial columns 
and the equation (3.3a) has the form (3.12). The equation 
(3.12) has the following two nonnegative solutions for 
any nonnegative sequence 0≥iy , 1,0=i . 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

1

0

20

10

y
y

x
x

 for 00 =u  (3.28a) 

and 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

1

0

0

10

y
y

u
x

 for 020 =x . (3.28b) 

Example 3.5. Consider the positive system with the 
matrices (3.13). The matrix (3.14) has full column rank 
and the condition (3.5) is satisfied if ad only if 2102 yy =  
(see Example 3.2). The matrix (3.14) contains only three 
linearly independent monomial rows. Therefore, by 
Theorem 3.7 the equation (3.3a) has not a nonnegative 
solution ,2

0 +ℜ∈x  ,+ℜ∈iu  1,0=i  for a nonnegative 

sequence ,2
+ℜ∈iy  2,1,0=i  satisfying the condition 

2102 yy = . Note that the in this case the positive pair 
),( CA  is observable since the matrix 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010
100
001
010
100
001

2CA
CA
C

  (3.29) 

contains three linearly independent monomial rows. 
Example 3.6. Consider the positive system (2.1) 

with the matrices 
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0

,
100
001

,
1
0
0

,
000
100
010

DCBA .(3.30) 

In this case the matrix (3.3b) has the form 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10000
00100
01000
00010
00100
00001

0
00

2 CBCABCA
CBCA

C
H  (3.31) 

and it has five linearly independent monomial rows. The 
second and the fifth its rows are identical. Therefore the 
condition (3.5) is met if and only if 2102 yy = . Omitting 
the fifth row in (3.31) from (3.26) and (3.31) we obtain 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

22

12

02

11

01

22

1

0

1

10000
01000
00010
00100
00001

y
y
y
y
y

y
y
y

z  (3.32) 

Generalizing Example 3.6 we obtain the following 
theorem. 

Theorem 3.8. It is possible to compute ,0
nx +ℜ∈  

,m
iu +ℜ∈  2,...,1,0 −= ni  of the positive system (2.1) 

with the matrices 

22

0
0

,
10...00
00...01

,

1
0

0

,

0...000
1...000

0...100
0...010

+
×

+

+
×

+

ℜ∈⎥
⎦

⎤
⎢
⎣

⎡
=ℜ∈⎥

⎦

⎤
⎢
⎣

⎡
=

ℜ∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=ℜ∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

DC

BA

n

nnn M
MOMMM

   (3.32) 

for a given output sequence ,2
+ℜ∈iy  1,...,1,0 −= ni  if 

the condition 

 1,102 −= nyy  (3.33) 

is met. 
Proof. Using (3.3b) and (3.32) we obtain 

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−− CB...BCABCACA
...
...CBCABCA
...CBCA
...C

H

nnn 321

2 0
00
000

MMMM

 

)n(n

......

......

......

......

......

......

......

......

......

122

10000000
00010000

01000000
00000100
00100000
00000010
00010000
00000001

−×ℜ∈

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

MMMMMMMM

(3.37) 

The matrix (3.34) has the second and the )1(2 −n -th 
rows identical. Therefore, the condition (3.5) is met if 
and only if (3.33) holds. Omitting the )1(2 −n -th row in 

(3.34) we obtain monomial matrix mH~  and from (3.26) 
we can compute the desired vector z consisting of 

nx +ℜ∈0  and ,m
iu +ℜ∈  2,...,1,0 −= ni . ϒ 

Case 2. 0≠D . 
Theorem 3.9. Let 0≠D  and pm ≥+1 . Then the 

equation (3.4a) has a nonnegative solution ,0
nx +ℜ∈  

,m
iu +ℜ∈  1,...,1,0 −= ni  for any given output sequence 

,p
iy +ℜ∈  1,...,1,0 −= ni  if and only if the matrix 

nmpnH )1( +×
+ℜ∈  contains np linearly independent 

monomial columns. 
Proof is similar to the proof of Theorem 3.6. 
Theorem 3.10. Let 0≠D  and 1+> mp . Then the 

equation (3.4a) has a nonnegative solution ,0
nx +ℜ∈  

,m
iu +ℜ∈  1,...,1,0 −= ni  for any given output sequence 

,p
iy +ℜ∈  1,...,1,0 −= ni  if and only if the following 

conditions are satisfied: 
1) the condition (3.17) is met, 
2) the matrix nmpnH )1( +×

+ℜ∈  contains nm )1( +  
linearly independent monomial rows. 

Proof is similar to the proof of Theorem 3.7. 
Remark 3.7. The equation (3.4a) has the unique 

nonnegative solution only if the positive pair ),( CA  is 
observable.  

Example 3.4. Consider the positive system (2.1) 
with the matrices A, B, C given by (3.11) and ]1[=D . In 
this case the matrix (3.4b) has the form 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

1110
010100

DCBCA
C

H  (3.35) 

and it contains two linearly independent monomial 
columns. The equation  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

1

0

1

0

20

10

1110
0101

y
y

u
u
x
x

 (3.36)  
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has the following two nonnegative solutions for any 
nonnegative sequence 0≥iy , 1,0=i  

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

1

0

20

10

y
y

x
x

 for 010 == uu  (3.37a) 

and 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

1

0

0

20

y
y

u
x

 for 0010 == ux . (3.37b) 

 
4. Concluding remarks 
The problem of computation of initial conditions and 

inputs for given outputs of standard and positive 
discrete-time linear systems has been formulated and 
solved. Two cases 0=D  and 0≠D  have been 
considered for standard and positive systems. Necessary 
and sufficient conditions have been established for 
existence of solution to the problem. It has been shown 
that there exist the unique solutions to the problem only 
if the pair (A, C) of the system is observable. Therefore, 
the computation of initial conditions and inputs for given 
outputs can be considered as a generalized observability 
problem for standard and positive linear systems. The 
considerations have been illustrated by numerical 
examples. 

The considerations can be extended to the fractional 
standard and positive discrete-time linear systems. An 
extension of these considerations for standard and 
positive continuous-time linear systems is an open 
problem. 
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РОЗРАХУНОК ПОЧАТКОВИХ УМОВ  
ТА ВХІДНИХ ДАНИХ ЗА ЗАДАНИМИ 
ВИХІДНИМИ ДЛЯ КЛАСИЧНИХ ТА 
ДОДАТНІХ ДИСКРЕТНИХ СИСТЕМ 

T. Качорек 

У статті сформульовано та розв’язано задачу 
обчислення початкових умов та вхідних даних за заданими 
вихідними для класичних та додатних дискретних в часі 
лінійних систем. Встановлено необхідні та достатні умови 
існування розв’язку поставленої задачі. Показано, що 
єдиний розв’язок даної задачі існує лише за умови 
спостережуваності пари (A, C) досліджуваної системи. 
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