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Abstract. The problem of computation of initial
conditions and inputs for given outputs of standard and
positive discrete-time linear systems has been formulated
and solved. Necessary and sufficient conditions for
existence of solution to the problem have been
established. It has been shown that there exist the unique
solutions to the problem only if the pair (A,C) of the
system is observable.
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1. Introduction

Inputs, state variables, and outputs in positive
systems take only non-negative values. Examples of
positive systems are industrial processes involving
chemical reactors, heat exchangers and distillation
columns, storage systems, compartmental systems, water
and atmospheric pollution models. A variety of models
having positive linear behavior can be found in
engineering, management science, economics, social
sciences, biology and medicine, etc. An overview of
state of the art in positive linear theory is given in the
monographs [2, 5].

The notions of controllability and observability and
the decomposition of linear systems have been introduced
by Kalman [8, 9]. Those notions are the basic concepts of
the modern control theory [1, 7, 10, 11, 4]. They were also
extended to positive linear systems [2, 5].

The decomposition of the pair (A,C) and (A,B) of the
positive discrete-time linear systems was addressed in [3].

In this paper the problem of computation of initial
conditions and inputs for given outputs of standard and
positive discrete-time linear systems will be formulated
and solved. Necessary and sufficient conditions for
existence of solutions to the problem will be established.

The paper is organized as follows. In section 2 the
problem is formulated. The main results of the paper are
given in section 3, where the necessary and sufficient
conditions for existence of solutions to the problem for
standard and positive systems are established.
Concluding remarks are given in section 4.

The following notation will be used: R - the set of

real numbers, R™™ - the set of nxm real matrices,

R™™ - the set of nxm matrices with nonnegative

entriesand R} =R, |, - the nxn identity matrix.

2. Preliminaries
Consider the linear discrete-time systems

X, =A% +Bu, ieZ ={01..},

y, =Cx + Du; ,

(2.1a)
(2.1b)

where x e R", u eR™, y eRP are the state, input
BeR™™, CeRP",

D e RP™. Without decrease of generality it is assumed
that

and output vectors and Ae R™",

rank B=m and rank C = p. (2.2)

Definition 2.1. [2, 5] The system (2.1) is called

(internally) positive if and only if x e9®!, and

y,eRP, iezZ, for every x, eR!,, and any input
sequence U e R, ieZ,.

Theorem 2.1. [2, 3] The system (2.1) is (internally)
positive if and only if

AcRT", BeRT™ CeRP" DeRP™. (2.3)

The problem under considerations can be stated as
follows.

Given the sequence of inputs vg, ¥;,..., ¥, compute
the initial condition X, and input sequence Ug,U,..., Uy
for the standard and positive system (2.1).

The problem can be considered as a generalization
of the observability problem of standard and positive
discrete-time linear systems [1, 4, 7, 11].

The following two cases will be considered
separately for standard and positive systems:

Case 1. The matrix D=0.

Case 2. The matrix D#£0.

3. Problem solution
3.1. Standard systems
Substituting the solution of the equation (2.1a)

; i-1
xi:A'x0+IZA"k’lBuk, ez, (1)

k=0
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into (2.1b) we obtain
) i-1
y, =CA%+ > CA "By, +Du, ieZ,. (32
k=0
If D=0 then using (3.2) for i=01,...,n-1 we

obtain

Hz=y (3.39)
where
C 0 0 .. 0
CA CB 0 .. 0
c mpnx(m(n—l)m)’

H=| cA> CAB cB .. 0

cA"! cA"™?B CA"®B .. CB

i Yo
Uo Y1
e R,

z=| u eiRm(n—l)m’ y=| v,

Un_2 Yna
(3.3b)
If D=0 then using (3.2) for i=01,...,.,n-1 we
obtain

Hz=y (3.4a)
where
C D 0 . 0 0
CA CB D . 0 0
A=

CAB CB

- O

0lem pnx(m+l)nl

cA™t cA"™?B cA"®B .. CB D

(3.4b)
In the proof of the main result of this paper the
following well-known Kronecker-Cappely Theorem will
be used [6].
Theorem 3.1. The equation (3.3a) has a solution z
for given H and y if and only if
rank[H y]=rank H .

Casel. D=0.
Theorem 3.2. Let

Then the equation (3.3a) has a solution Xy, up,U,...,U,_»

(3.5)

D=0andn+(n-1)m=np.

for any given sequence Vg, V;,..., Yo_1 if and only if the

matrix H has full row rank, i.e.
rank H = pn. (3.6)

Moreover, the equation has the unique solution

z=H"1y (3.7)

if n+(n-1)m=np and many solutions if
n+(n-1)m>np.

Proof. If (3.6) holds then the condition (3.5) is
satisfied for any vector y. If additionally

n+(n-1)m=np the matrix H is square and invertible.

In this case the unique solution of (3.3a) is given by
(3.7). If n+(n—-1)m> np the equation (3.3a) has many

solutions. o
Theorem 3.3. Let D=0 and np>n+(n-1)m.

Then the equation (3.3a) has a solution Xy,up,u,...,U,_»
for a given sequence Vg, V,.... Yoy if and only if the

condition (3.5) is met. Moreover, the equation has the
unique solution if

rank H=n+(n-1)m (3.8)
and it has many solutions if
rank H <n+(n-1)m (3.9

Proof. By Theorem 3.1 the equation (3.3a) has a
solution Xg,Up,U;,...,U,_» fOr a given output sequence
Yo: Y1 Yoa If and only if the condition (3.5) is

satisfied. The solution is unique if (3.8) is met since the
matrix H has full column rank. Presume that the equation
(3.3a) has two different solutions z and z, satisfying

Hz =y and Hz,=y. Then H(z-2z)=0 and
7z —2,=0 since H has full column rank. If (3.5) and

(3.9) hold then the equation (3.3a) has many solutions.
Remark 3.1. Note that the first matrix column

C
CA

: (3.10)
CA”-l

of H is the observability matrix of the system (2.1). The
matrix (3.10) has full column rank if and only if the pair
(A,C) is observable. Therefore, the equation (3.3a) has

unique solution only if the pair (A C) is observable.

Example 3.1. Consider the system (2.1) with the
matrices

01 1
A:[1 0}, B:M, C=[1 0], D=[0].(3.11)

X0

Compute the initial condition x, :{
%20

} and the

input u, of the system for the given output sequence
Yo Y1
In this have n=2,
n+(n-1)m=3>np =2 and the matrix
H:{C O}:{l 0 O}
CA CB 011

has the full row rank.

case we m=p=1,
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The equation (3.3a) has the form

10 0] Ty,
01 1|
Y1

Ug

(3.12)

and it has many solutions for any sequence Y,,y; . From
(3.12) we have

{Xlo} = { Yo } for arbitrary U,
X0 ] [Y1—Uo

or {Xm} ={ Yo } for arbitrary X, .
Uo Y1 %20

Example 3.2. Consider the system (2.1) with the
matrices

010 0

100 0
A=|0 0 1|, B=|0]|, Cz{ } D:{ ](3.13)
0 01 0
100 1
In this case we have n=3, m=1, p=2,
np=6>n+(n—-1)m=>5 and the matrix
1 0 0 0 O
00100
C 0 0
01 000
H=|CA CB 0 |= (3.14)
) 10010
CA° CAB CB
00100
01001

has full column rank. Note that the second and the fifth
rows of (3.14) are identical. Therefore, by Theorem 3.3
the equation (3.3a) for (3.14) has a unique solution if and
only if yg, =Y, , where vy, is the k-th component of

the vector y;, 1=012; k=12.

Omitting the second row of (3.14) we obtain the
equation

X Yo1
H U= % (3.15)
U Y2
where
(1 0 0 0 O]
01000
H=/1 0010 (3.16)
0 0100
010 0 1]

is nonsingular, detff =1. The equation (3.15) and also
(3.14) has the unique solution

[ Yo |
X0 Yo Y
U | = - Vi |[=| Ya (3.17)
U Y2 Y11~ You

| Yoo = Y11 |

Case2. D#0.

Theorem 3.4. Let D=0 and m+1> p. Then the
equation (3.4a) has a solution xy,uy,4,...,U,_; for any
given output sequence Vg, Y;,..., Yo1 if and only if the

matrix H has full row rank; i.e.

rank H = pn. (3.18)
Moreover, the equation has the unique solution
Z=Hly (3.19)

if m+1= p and many solutions if m+1> p.

Proof is similar to the proof of Theorem 3.2.
Theorem 3.5. Let D=0 and p>m+1. Then the
equation (3.4a) has a solution X,,Uq,W,...,U,_; for a
given output sequence Vg, Y;,..., Yo1 if and only if the
condition
rank H =n+(n-1)m (3.20)

is met. Moreover, the equation has the unique solution if
rank H <n+(n-1)m (3.21)

Proof is similar to the proof of Theorem 3.3.
Remark 3.2. The equation (3.4a) has unique
solution only if the pair (A,C) is observable.

Example 3.3. Consider the system (2.1) with the
0
matrices A, B, Cgiven by (3.13)and D = [J

In this case the matrix

100000
001100
N 0 0 010000
H=/CA CB 0 |= (3.22)
) 1 00110
CA° CAB CB
001000
0100 1 1]
is nonsingular. Using (3.19) we obtain
1000 0 O]
001100
_ 101 0000
Z= X
100110
001000
01001 1 (3.23)
[ Yo |
Yo Y11
x|y |= Y21
Yy Yoz = Y21
Y12 + Y21~ Yo1 — Yoz
L Yor + Yoo + Y22 = Y11 — Y12 — Y1 |

3.2. Positive systems

Casel. D=0.

From Definition 2.1 and Theorem 2.1 that for
positive systems
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HeR pnx(n+(n-1)m) ﬁ cR pnx(m+1)n

- ’ - . (3.24)

ye ‘an, ze er:Jr(n—l)m’ 7 e m&mﬂ)n
it follows.

Definition 3.1. [5] A square matrix A (a vector) is
called the monomial matrix (vector) if its every row and
its every column contains only one positive entry (one
positive component) and the remaining entries
(components) are zero.

Lemma 3.1. [5] The inverse matrix A~! of a matrix
AcR™" is the positive matrix A™ e R™" if and only
if A'is monomial matrix.

Theorem 3.6. Let D=0 and n+(n—-1)m>np.
Then the equation (3.3a) has a solution x,eR",
u eRT, i=01L..,n-2 for any given output sequence

y, eRP, i=01..,n-1 if and only if the matrix
H e ®P>+(-DM  contains np linearly independent

monomial columns.
Moreover, the equation has the unique solution

(3.25)
if the matrix H contains only one monomial matrix H,

z=H.'y

and many solutions if it contains many such monomial
matrices.

Proof. The equation (3.3a) has a solution for any
given sequence Y, ¥i,..., Y1 if and only if the condition
(3.6) is met. By Lemma 3.1 the solution is nonnegative
X eRT, yeRT, i=01..,n-2 for a nonnegative
sequence y, e RP, i=01..,n-1 if and only if the
matrix H contains at
H,eRP™P" The solution (3.25) is unique if the
matrix H contains only one monomial matrix and many
solutions if it contains more then on such monomial

matrices. o
Theorem 3.7. Let D=0 and np>n+(n-1)m.

least one monomial matrix

Then the equation (3.3a) has a solution x, e R,
u eRT, i=0.L..,n-2 for any given output sequence

y, eRP, i=0L..,n-1 if and only if the following
conditions are satisfied:
1) the condition (3.5) is met,

2) the matrix HeRP™OTODM  containg
n+(n-1)m linearly independent monomial
rows.

Moreover, the equation has the unique solution

z=Hly (3.26)
where ﬁm is the monomial matrix consisting of linearly

independent monomial rows of the matrix H.

Proof. For np>n+(n—-1)m the equation (3.3a) has
a solution if and only if the condition (3.5) is met. By
Lemma 3.1 the solution is nonnegative X, R,

ueRT, i=01..n-2 for a nonnegative sequence

Yy, eRP, i=0L..,n-1 if and only if the matrix H
contains one

ﬁm c i}{grm(n—l)n)x(m(n—l)n)

monomial matrix

. The solution (3.26) is
unique since the matrix H contains only one monomial
matrix. Y

Remark 3.3. The equation (3.3a) has the unique
solution (3.26) only if the positive pair (AC) is
observable. In this case the observability matrix (3.10)
contains n linearly independent monomial rows.

Example 3.4. Consider the positive system (2.1)
with the matrices (3.11). In this case the matrix

C 0110 0] .
H= = eR?®  (3.27)
CA CB| |0 1 1

contains two linearly independent monomial columns
and the equation (3.3a) has the form (3.12). The equation
(3.12) has the following two nonnegative solutions for
any nonnegative sequence y; >0, i=01.

{Xlo} = {yo} for uy =0 (3.28a)
%20 Y1
and
{Mﬂz{%}mrgozo. (3.280)
Uy Y1

Example 3.5. Consider the positive system with the
matrices (3.13). The matrix (3.14) has full column rank
and the condition (3.5) is satisfied if ad only if yy, =y,

(see Example 3.2). The matrix (3.14) contains only three
linearly independent monomial rows. Therefore, by
Theorem 3.7 the equation (3.3a) has not a nonnegative

solution X, eR?, u ewR,, i=01 for a nonnegative
sequence Y, e R?, =012 satisfying the condition
Yoz = Y21 - Note that the in this case the positive pair
(A,C) is observable since the matrix

100
001
C
010
CA |= (3.29)
o111 00
CA
001
010

contains three linearly independent monomial rows.
Example 3.6. Consider the positive system (2.1)
with the matrices
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010 0 L oo .
A=|0 0 1| B=|0], C{o . J, D=LJ.(3.30)
000 1

In this case the matrix (3.3b) has the form

100 0 0]
00100
C 0 0
01000
H=|CA CB 0 |= (3.31)
) 00010
CA’> CAB CB
00100
000 0 1

and it has five linearly independent monomial rows. The
second and the fifth its rows are identical. Therefore the
condition (3.5) is met if and only if y;, =V,, . Omitting

the fifth row in (3.31) from (3.26) and (3.31) we obtain
— -1 — -

10000 Yor
00100 | Yi1

z=|0 1 0 0 O Vi =1 Yoz (3.32)
00010 [yn Y12
0000 1 Yoo

Generalizing Example 3.6 we obtain the following
theorem.

Theorem 3.8. It is possible to compute X, € R",
u eRT, i=01..,n-2 of the positive system (2.1)
with the matrices

010 ..0 _
0
001 .. 0 .
A= ¢ 1 0 1 eRT", B=| |eR],
000 .. 1 (3.32)
0 00 0 -
1 0 .. 00 [0
C= eRP", D=| |eR?
00 .. 01 0
for a given output sequence ; ein, i=01,..,n-1if
the condition
Yo2 = Yn-11 (3:33)

is met.
Proof. Using (3.3b) and (3.32) we obtain

C 0 0 0
CA CB 0 0
O =

H=| CA CAB CB

CA™ CA"”B CA™B .. CB

100 ..0000 ..0

000 ..0100 ..0

010 .0000 ..0

000 ..0010 ..0 (3.37)
=101 ..000 0 .. 0lewm™ed
000 .0001 ..0

000 ..0100 ..0

000 ..0000 .1

The matrix (3.34) has the second and the 2(n—1)-th
rows identical. Therefore, the condition (3.5) is met if
and only if (3.33) holds. Omitting the 2(n—1) -th row in
(3.34) we obtain monomial matrix ﬁm and from (3.26)
we can compute the desired vector z consisting of
X eRTand y e RT, i=01..,n-2.Y

Case2. D=#0.

Theorem 3.9. Let D=0 and m+1> p. Then the
equation (3.4a) has a nonnegative solution X, € R,
u eRT, i=01L..,n-1 for any given output sequence
y, eRP, i=01..,n-1
H e RP™(M™DN contains  np

monomial columns.
Proof is similar to the proof of Theorem 3.6.
Theorem 3.10. Let D=0 and p>m+1. Then the

if and only if the matrix

linearly independent

equation (3.4a) has a nonnegative solution X, € R",
u eRT, i=01..,n-1 for any given output sequence

y. eRP, i=0L..,n-1 if and only if the following
conditions are satisfied:

1) the condition (3.17) is met,

2) the matrix H eRP™™DN contains (m+1)n

linearly independent monomial rows.

Proof is similar to the proof of Theorem 3.7.

Remark 3.7. The equation (3.4a) has the unique
nonnegative solution only if the positive pair (AC) is
observable.

Example 3.4. Consider the positive system (2.1)
with the matrices A, B, C given by (3.11) and D =[1]. In
this case the matrix (3.4b) has the form

— |C 0 O 1 010
H= = (3.35)
CACB D| |01 11
and it contains two linearly independent monomial
columns. The equation
X0
1 01 0)X0| |Yo
0111yl |y

U

(3.36)
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has the following two nonnegative solutions for any
nonnegative sequence y;, >0, i = 0,1

%20 Y1

%20 Yo
= for x,=uy, =0. (3.37b)
{ Uo } [VJ o=t

(3.37a)

and

4. Concluding remarks

The problem of computation of initial conditions and
inputs for given outputs of standard and positive
discrete-time linear systems has been formulated and
solved. Two cases D=0 and D=0 have been
considered for standard and positive systems. Necessary
and sufficient conditions have been established for
existence of solution to the problem. It has been shown
that there exist the unique solutions to the problem only
if the pair (A, C) of the system is observable. Therefore,
the computation of initial conditions and inputs for given
outputs can be considered as a generalized observability
problem for standard and positive linear systems. The
considerations have been illustrated by numerical
examples.

The considerations can be extended to the fractional
standard and positive discrete-time linear systems. An
extension of these considerations for standard and
positive continuous-time linear systems is an open
problem.
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Multivariable Systems,

PO3PAXYHOK ITIOYATKOBHUX YMOB
TA BXIJHUX JAHUX 3A 3ATAHUMHAU
BUXITTHUMU JJIAA KTACUYHUX TA
JOIJATHIX TUCKPETHUX CUCTEM

T. Kauopex

Y crarri chopMynbOBaHO Ta PO3B’SA3aHO  3amady
OOYHCIIEHHS TIOYaTKOBHX YMOB Ta BXiJHUX JAQHHX 3a 3aJJaHUMU
BUXIJHUMH JUI KJIACHMYHHUX Ta JOJATHHUX IUCKPETHUX B daci
NiHIHHUX cucTeM. BeraHOBIIEHO HEOOXiHI Ta IOCTaTHI YMOBHU
iCHyBaHHsI PO3B’SI3Ky IOCTaBieHOI 3amaui. IlokasaHo, IO
€IVHUHA PpO3B’SI30K JaHOi 3ajayi ICHye Juie 3a yMOBH
criocrepexyBanocTi mapu (A, C) 10CIiKyBaHOT CHCTEMH.
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