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Abstract. Electromagnetic and thermal processes in 

a moving conducting strip have been considered on the 
base of a simplified mathematical model. The following 
features have been taken into account: non-uniformity of 
eddy current and Joule’s heat distributions, heat transfer 
in directions across the strip and along its surface. The 
temperature has proved to become homogeneous 
through-thickness for typical modes of induction 
heating. On the contrary, the heat transfer along the 
surface is insignificant and, therefore, it is possible to 
consider the process adiabatic. Estimations of 
characteristic parameters of the process have been made 
for aluminum, brass and steel strips. 
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1. Introduction 
One of the main problems of induction heating of 

metal strip is to ensure a certain temperature of the strip 
moving across an alternating electromagnetic field of an 
inductor [1]. In general, the problem is complicated in 
the computation sense. Therefore, the approximate 
asymptotic methods of calculation which allow us to 
consider the most essential geometrical, electrophysical 
and heat-transfer properties of electromagnetic systems 
are rational. 

The main objective is the analysis of 
electromagnetic and heat-transfer parameters of an 
electromagnetic system of high-frequency induction 
heating of metal strips to define the possibility of using 
approximate mathematical models and to determine 
conditions under which it is possible to consider 
electromagnetic and thermal problems separately. 

In the present paper the high-frequency induction 
heating of strips is considered. The field is generated by 
a coreless inductor, made in the form of a coil frame 
generally of a spatial configuration (fig. 1) [2, 3]. 

Earlier in [2, 4] with the use of the method of 
asymptotic expansion for a field created by a current 
contour located above the conducting half-space, the 
analytical estimations of geometrical parameters of the 
system were determined under condition of a uniform 

distribution of linear density thermal energy generated in 
the strip that moves in the field of inductor. This 
distribution of thermal energy defines the distribution of 
temperature of strip. The problem will be simplified if 
the heat transfer along a surface of the strip is 
insignificant.  

 

 
Fig. 1. The model of electromagnetic system 

2. Mathematical model 
The field is considered to be generated by a coreless 

inductor, made in the form of a coil frame. The 
temperature of the strip is relatively low that alows heat 
radiation not to be taken into account.  

At high-frequency induction heating of metal strips, 
the following three dimensionless parameters turn out to 
be small: 

 
γωμμ

=
δ

=ε
0

1
21

dd
, (1) 

 
2/1

0
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γωμ

μ
=ε

h
, (2) 

 
h

v
ω

=ε3 , (3) 

where δ  is penetration of field, ω  is frequency, γ  is 
electro conductivity, μ  is relative magnetic conductivity, 
d  is thickness of strip, h  is distance from contour to 
strip, v  is velocity of strip. 

In the devices intended for induction heating the 
inductor is located near to the surface of the strip. In this 
case one more parameter is usually small 
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 Dh=ε4  (4) 
where D  is the representative size of the inductor 
contour. 

If the above introduced parameters are small the 
electromagnetic problem on distribution of eddy currents 
in conductive medium becomes considerably simpler. In 
[4] it has been shown that the average for a period 
density of the electromagnetic energy flow along metal 
surface zp  (the real part of normal component of 
complex Poynting vector) 
 )Re( zzp e⋅−= Π  (5) 
can be presented in the form of bounded numbers of 
asymptotical series. To conduct estimation in case of a 
high frequency field it is enough to take the first nonzero 
item: 
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where 
γ
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=ζ

2
0  - the absolute value of surface 

impedance. 
As (6) shows the thermal energy is produced in a 

narrow area of an h  width strip under the conductor 
contour. Transfer of the generated heat occurs in 
directions across strip and along its surface in two 
directions: parallel and perpendicularly to velocity v . 

All medium physical properties: conductance, 
thermal conductivity, a specific heat – are considered as 
the linear for heat parameters estimation. 

 
3. Heating parameters estimation 

Temperature distribution along thickness 
The representative size in a transversal direction to the 

strip is penetration of an electromagnetic field into its 
metal δ . For high-frequency heating the depth δ  is 
usually considerably less than the strip thickness. Due to 
the thermal conductivity the extracted heat penetrates 
deeper into the metal. If this process is sufficiently quick, 
at a certain time the uniform temperature will be 
established along strip thickness. Let’s compare the 
representative temperature stabilisation time for the thick-
ness dτ  to the representative time of strip heating pτ . 

As in actual practice the thickness of strip d  is 
much less than distance h  the temperature at any point 
of the medium can be determined from expression: 
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where Q  is surface density heat, thermal diffusivity 
ρλ= ca /  determined through specific heat capacity c , 

thermal conductivity λ  and density ρ , t  is time. If in a 

certain time the temperature of the given volume of a 
metal strip becomes homogeneous along thickness, in 
the absence of a heat emission it will be equal to 

dc
QT
ρ

=∞ . 

The estimation of stabilisation time of the 
homogeneous temperature dτ  we will calculate from the 

following condition: ∞=τ TT d ),0( . From here the 
estimation of the temperature stabilisation time is 
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The representative time of strip heating pτ  can be 

determined as time of the metal strip section transit 
under conductor. The following parameter allows to 
come to a conclusion, whether the homogeneous 
temperature in the process of the heating is established: 
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Table 1 contains  values dε  for strips with 

thicknesses of 310−=d  m and 3103 −⋅=d  m (the line 
separates values corresponding to the upper and lower 
expressions in (8) correspondingly). The following 
values of conductor dimensions and velocity are typical 
for the induction heating: 2,0=D  m, 2103 −⋅=h  m, 

1cos =β , 110−=v  m/s. Parameters dε  are given for the 

following materials: aluminium ( 2108,8 ⋅=c J/kg⋅K, 
3107,2 ⋅=ρ  Kg/m3, 2101,2 ⋅=λ  W/m⋅К); brass 

( 2108,3 ⋅=c J/kg⋅K, 3105,8 ⋅=ρ  Kg/m3, 5,85=λ  
W/m⋅К); steel ( 2106,4 ⋅=c J/kg⋅K, 3108,7 ⋅=ρ  Kg/m3, 

4,45=λ  W/m⋅К). 
Table 1 

Parameter dε  

Thickness d , m Aluminium Brass Steel 
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Apparently that practically always the temperature 

becomes thickness homogeneous already during the strip 
transit under the corresponding sections of a contour. 
Therefore, in mathematical models of induction heating 
the temperature of metal strips can be accepted every-
where homogeneous for a thickness except for the 
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sections transiting at present time under a contour with a 
current. 

 
Heat transfer along a metal strip surface  
The extracted heat energy is transferred in the course 

of the motion in the direction of the velocity of the strip 
transit. On the other hand, the strip temperature directly 
under the contour strongly increases, and because of the 
emerged temperature gradient there is the heat flow 
caused by thermal conductivity. In this case the problem 
consists in the comparison of two processes of the heat 
transfer: thermal conductivity and the transit of heat by 
motion of metal. Parameters of processes of the heat 
transfer are different for the sections near to the 
intermediate point C  and at edges of the contour near to 
the points A and B (fig. 1). Therefore, we will consider 
these sections separately.  

a) Heat transfer near to the intermediate points of 
contour. 

During transition under contour, the element of 
volume of the strip ydxV ΔΔ=Δ  which have reached 
the coordinate y  receives energy, equal to [4] 
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This thermal energy leads to temperature growth: 
 ))(()( 0TyTydxcyW −ΔΔρ=Δ  (10) 
where 0T  - temperature before heating. Comparing (9) 
and (10), we obtain 
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The temperature gradient and medium motion cause 
the corresponding thermal flows. The Fig. 2 qualitatively 
illustrates directions of flows of thermal energy related 
to thermal conductivity 1U  and heat transfer by a 
medium motion 1vU . 
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Fig. 2. The directions of heat flows under intermediate  

points of contour 

The heat flow due to the thermal conductivity is 
directed in opposite direction to strip motion, and is 
equal to 
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The maximum value max1U  is reached directly under 

a contour at 0=ξ . 
Let's compare max1U  to a maximum of heat flow 

transferred by a motion of heating metal 
))(( 01 TTxdvcUv −∞Δρ= . In order to describe the heat 

transfer by the thermal conductivity in the direction along 
the velocity vector in comparison with a heat transfer by 
the motion let’s introduce the following parameter: 
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Considering (6), the resultant expression for 1Lε is 
given by: 
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Table 2 contains values of parameter 1Lε  for 

aluminium, brass and a steel strips at 2103 −⋅=h  m and 
motion velocity 110−=v  m/s. 

Table 2 

Parameters 1Lε  and 2Lε   

 Aluminium Brass Steel 

1Lε  2109,1 −⋅  3106,5 −⋅  3107,2 −⋅  
2Lε  2,6⋅10-1 7,6⋅10-2 3,6⋅10-2 

 
In all cases and even at a velocity in some cm/s heat 

transfer gradient of temperature in the area of the 
conductor of the contour the thermal conductivity is 
significantly lesser in comparison with a heat transfer 
due to the metal motion. 

b) Heat transfer near contour edges. 
Near the edges of the current contour the 

temperature gradient is directed perpendicularly to the 
velocity v . Heat input happens on the long section. To 
get the estimates, we will consider that heat is brought 
uniformly throughout a section, equal to the 
representative size of contour D . 

The amount of heat brought to the strip section of a 
small length yΔ  and a width of ξ2  will be 

 ( )∫
ξ

ξ−
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where vDt /=Δ  – section heating time. 
Quantity of heat, given away by thermal 

conductivity is 
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The direction of thermal energy flow is shown on 
Fig. 3. 
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Fig. 3. The direction of heat flow near contour edges 
The temperature linearly grows in process of motion 

along coordinate у : 
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The ratio of heat quantity 2WΔ  leaved the strip 
element with width of ξ2  due to thermal conductivity to 
arrived energy 2vWΔ  in metal strip caused by eddy 
currents is 
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Taking into account (6) the factor in (19) becomes 
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where h/ξ=χ . 
The greatest magnitude max2WΔ  will be at maxχ=χ , 

where the derivative 
ξ∂
ξ∂ )),(( hpz  has maximum value. 

In this point 51max =χ  and then 6,2)( max =χF . 
The dimensionless parameter is equal: 
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In Table 2 values of 2Lε  for the former parameters 
of heating are presented. As it seen in most cases the 
heat transfer due to the thermal conductivity near the 
edges remains negligible in comparison with heat 
income, caused by Joule dissipation of an 
electromagnetic energy. Only at rather small velocities 
thermal flows can appear comparable, especially for 

materials with high value of thermal diffusivity 
(aluminium, cuprum, etc). 

 
4. Conclusions 
As a result of the fulfilled estimation of main 

parameters of heating moving metal strips in a high-
frequency field of the ironless conductors, the following 
conclusions, which can be used for the elaboration of 
mathematical models of the considered processes, have 
been drown: 

1) The temperature can be considered thickness 
homogeneous at any point of the metal strips out of the 
area directly under a current contour. 

2) In directions along the surface of the heated metal 
strip the heat transfer due to the thermal conductivity is 
negligibly small in comparison with the heat transfer, 
caused by the medium motion and the heat income due 
to the Joule dissipation of electromagnetic energy. In this 
sense it is possible to assume that it is an adiabatic 
process in these directions. The temperature at any point 
of moving strip (with the restrictions introduced in the 
previous section) will be: 
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where ∫
∞−

ξξ=
y

z dhpуxP ),(),(  is linear density of 

electromagnetic energy flow caused by Joule dissipation. 
The above conclusions are illustrated below by 

comparison of the calculations results for the brass strip 
temperature, performed with assumption of adiabatic 
heating and taking into account the thermal conductivity. 
The strip with thickness of 3103 −⋅=d  m and width of 

6,0  m is heated up, transiting under a flat circular 
contour with radius of 25,0=a  m. Distance between 
contour and the brass strip is 04,0=h  m. The frequency 
of current is 410=f  Hz. Calculations have carried out 
for two strip’s velocity values: 25,0=v  m/s and 

01,0=v  m/s. 
With the chosen input data, parameters 1Lε  and 2Lε  

have the values shown in table 3. 

Table 3 

Parameters 1Lε  and 2Lε  for brass 

v , m/s 
1Lε  

2Lε  

0,25 3107,1 −⋅  2103,4 −⋅  
0,01 2104 −⋅  1,1 

Table 3 shows that along a surface of a strip for a 
velocity of 25,0=v  m/s the process is adiabatic. At the 
same time for a strip velocity of 01,0=v  m/s it is 
impossible to consider the process as adiabatic and for 
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the determination of distribution temperature it is 
necessary to consider thermal conductivity of a strip. 

The above conclusions proved to be true by the 
calculations of the distribution temperature on a strip 
width on distance of 0,5 m from the centre of the circular 
contour. In Fig. 4 and Fig. 5 the solid curves represent 
the results obtained with the application of asymptotic 
computational method [2] with assumption of adiabatic 
heating. The dotted curves correspond to the data of joint 
solution of the electromagnetic and thermal problems 
obtained by method in which no restrictions are put on 
the parameters of heating [3] (the data were submitted by 
Dr. I.P.Kondratenko). 
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Fig. 4. Distribution of temperature at v=0,25 m/s 
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Fig. 5. Distribution of temperature at v=0,01 m/s 

The comparison shows that at the strip velocity of 
25,0=v  m/s there is a good match of the results of two 

approaches and in this case the condition of adiabatic 
heating is really satisfied. 

For a strip velocity of 01,0=v  m/s as it follows 
both from estimates of parameters and from the results 
of the calculations (fig. 5), it is impossible to consider 
the heating as adiabatic process. The calculations in this 
case should be performed taking into account the joint 
influence of the heating by eddy currents and the heat 
transfer related to thermal conductivity and the motion of 
the medium. 
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НАБЛИЖЕНІ МАТЕМАТИЧНІ МОДЕЛІ  
ЕЛЕКТРОМАГНІТНИХ І ТЕПЛОВИХ 
ПРОЦЕСІВ ПРИ ІНДУКЦІЙНОМУ 
НАГРІВАННІ МЕТАЛЕВИХ СМУГ 

І. Мазуренко, Ю. Васецький 

На основі спрощеної математичної моделі розглянуто 
електромагнітні та теплові процеси в рухомій електро-
провідній смузі. При індукційному нагріванні тепло пере-
нос теплопровідністю уздовж поверхні смуги виявляється 
незначним, і процеси у цьому напрямку можна розглядати 
як адіабатичні. Для металевих смуг з алюмінію, латуні і 
сталі зроблено оцінки характерних параметрів процесів. 
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