УДК 550.834.042; 551.21.3; 539.375; 552.53:552.2

Г.Т. Продайвода, С.А. Вижва, Ю.А. Онанко, А.П. Онанко

АВТОМАТИЗОВАНА СИСТЕМА МАТЕМАТИЧНИХ РОЗРАХУНКІВ АКУСТИЧНИХ ТА ПРУЖНИХ ВЛАСТИВОСТЕЙ ГІРСЬКИХ ПОРІД ЗА ДАНИМИ УЛЬТРАЗВУКОВИХ ВИМІРЮВАНЬ

Запропонована автоматизована система чисельного аналізу і візуалізації даних ультразвукових вимірювань параметрів анізотропії швидкостей пружних квазіповздовжньої, "швидкої" і "повільної" квазіпоперечних хвиль гірських порід. Досліджено ефекти параметрів анізотропії порід-колекторів за результатами ультразвукових вимірювань для складних напружено-деформаційних умов. Вставлено ромбічний тип акустичної анізотропії, що пов'язаний з текстурними особливостями, речовинним складом та складноупорядкованою мікротріщинуватістю порід.

Ключові слова: автоматизована система; акустична анізотропія; швидкості пружних хвиль; мікротріщини.

Вступ. Чисельний аналіз, математичне моделювання і експериментальні дослідження параметрів анізотропії ультразвукових (УЗ) швидкостей пружних хвиль, характеристик акустичного тензору μ_{il} дозволяють встановлювати особливості напружено-деформованого стану гірських порід [Александров, Продайвода, 2000]. Інтенсивний динамотермальний метаморфізм, що накладався на породи, призводив до структурно-механічного перетворення їх при різних рівнях тисків Р та температур Т в анізотропних полях напружень σ. Ці перетворення мали свій відбиток у структурноособливостях порід. текстурних Планальна структура означає, що породи в момент свого утворення перебували в умовах квазівсебічного літостатичного тиску; аксіальна структура свідчить про наявність директивних напружень σ.

Комплексний підхід до аналізу результатів вимірювання УЗ досліджень на зразках гірських порід, що полягає в оцінці акустичного тензору µ_{il} при залученні інших геологічних характеристик породи (літологічних, петрологічних) дозволяє вирішити ряд задач, пов'язаних із встановленням характеристик анізотропії пружних властивостей порід [Вижва, 2004].

Район робіт, методи та об'єкти досліджень. Були відібрані зразки порід-колекторів із різних структурних зон Волино-Подільського регіону: Володимирівської, Великомостівської, Сокальської і Сушнівської площ. У текстурному малюнку досліджуваних порід спостерігався перехід від брекчіювання до часткової мілонітизації та філонітизації. Розмір пор у дрібнозернистих пісковиків складав близько d ≈ 50 мкм присутні як відкрита так і закрита види пористості.

Фазові швидкості об'ємних пружних хвиль одержані за допомогою імпульсної установки для УЗ вимірювань швидкостей на частоті f \approx 1,67 МГц. У випромінювачу і приймачу повздовжніх V_{II} і поперечних V_⊥ мод коливань пружних хвиль використовувалася п'єзокварци відповідної поляризації. Точність визначення фазових швидкостей

повздовжніх та поперечних мод $\Delta V/V \approx 0.5\%$.

Мета і задачі досліджень. Задачею цього дослідження є показ ефективності застосування методу використання вимірювань параметрів анізотропії швидкостей пружних хвиль V з точки зору встановлення основних типів акустичної анізотропії, зв'язку її з геологічними умовами існування гірських порід.

Результати досліджень. Результати вимірів оброблялися за допомогою автоматизованої системи чисельного аналізу і візуалізації даних ультразвукових вимірювань параметрів анізотропії швидкостей пружних хвиль гірських порід, опис якої наведено нижче. Принципова схема алгоритму роботи цієї системи представлена на рис.1.

Швидкості пружних хвиль V_∥, V_{⊥1} і V_{⊥2}, акустичні константи µ_{il} і пружні постійні С_{іjkl} пісковиків змінюються в широких межах, що пов'язане із варіаціями їх літологічного складу і складом цементу, наявністю пор і мікротріщин на фоні існування інтенсивної азимутальної анізотропії фазових швидкостей V пружних хвиль різної поляризації. Аналіз пружних констант С_{іікі} дозволив встановити чисельні значення анізотропії зразків: акустичну лінійність L_µ, сланцюватість S_µ, інтегральний акустичну коефіцієнт пружної анізотропії А_µ, тип симетрії N акустичного тензору µ_{il}. Зазначені параметри описують в чисельному виді форму акустичного еліпсоїду, а саме акустична лінійність $L_{\mu} = \mu_{g}/\mu_{m}$ і акустична сланцюватість $S_{\mu} = \mu_m / \mu_p$, де μg , $\mu_m i \mu_p$ відповідно найбільше, проміжне і найменше власні значення акустичного тензору µ_{il}.

Обговорення результатів. Залежність акустичної лінійності L_{μ} від акустичної сланцюватості S_{μ} текстур досліджуваних зразків гірських на рис. 2 показує міру упорядкованості елементів текстури породи вздовж окремих напрямків (лінійна орієнтація, що відповідає акустичній лінійності) або вздовж площин (шаруватість, сланцюватість, що відповідає акустичній сланцюватості).

Рис. 1. Принципова схема алгоритму роботи автоматизованої системи чисельного аналізу і візуалізації даних ультразвукових вимірювань параметрів анізотропії швидкостей пружних хвиль гірських порід.

Рис. 2. Діаграми залежності акустичної лінійності L_µ від акустичної сланцюватості S_µ текстур зразків;

суцільна лінія розмежовує планальні і аксіальні текстури; зразки: 1) Вл-27; 2) Вл-31; 3) Вм-27; 4) Со-20; 5) Су-18; 6) Су-19

Рис. 3. Полярна діаграма параметрів акустичного тензору µ₁₁, µ₂₂, µ₃₃; зразки: 1)Вл-27; 2) Вл-31; 3) Вм-27; 4) Со-20; 5) Су-18; 6) Су-19

Результати аналізу параметрів акустичного тензору μ_{il} показали декілька головних тенденцій. Відстежується квазілінійна залежність між величинами L_{μ} і S_{μ} на рис. 2, що вказує на спільну причин їх формування, що супроводжується також збільшенням інтегрального коефіцієнту пружної анізотропії A_{μ} . Вплив структурно-текстурних особливостей породи є домінуючим на формування акустичної симетрії (кристалографічні осі, орієнтація структурних елементів: зерен, мікротріщин). Інтегральний коефіцієнт пружної анізотропії A_{μ} досліджуваних зразків змінюється в широких межах: 6,25 % < A_{μ} < 19,48 % і складає, у середньому $A_{\mu} \approx 9,99$ %.

Вплив глибинності H(P) (літостатичного тиску P) на A_{μ} неоднозначний - на малих глибинах H проявляється лінійна залежність $A_{\mu} =$ k H від глибини. Із збільшення глибини H відзначається помітне зниженням A_{μ} . Помічено, що з глибиною H відбувається зростання впливу планальної компонента симетрії акустичного тензору μ_{il} і зменшення аксіальної.

Найбільш виражені типи акустичної симетрії проявлені в пісковиках, і напроти, для зразку вапняку властиве найменш виражений тип симетрії і найнижча величина інтегрального коефіцієнту анізотропії А_µ. До того ж у нього виявлені найбільш високі значення фазових швидкостей V і і поперечних V⊥ і пружних постійних С_{іјкі}. Всі зразки (окрім пісковика із Сокальської площі, Co-20) володіють планальним типом симетрії акустичного тензору µ_{il}; зразок із аксіальною симетрією акустичного тензору (Со-20) має один із найнижчих величин коефіцієнту інтегральної пружної анізотропії А_и. He відзна-чається суттєвих статистично значимих відмін-ностей латерального розподілу А_и зразків на рис.3.

Результати аналізу симетрії акустичного тензору µ_і показують, що досліджувані текстури порід-колекторів по співвідношенню власних значень акустичного тензора можна віднести до

ромбічної симетрій на рис. 3. Ця особливість проявляється при розгляді стереопроекції диференціального коефіцієнту пружної анізотропії A_d на рис. 4.

Рис. 4. Стереопроекції диференціального коефіцієнта пружної анізотропії A_d, ізолінії в %, зразки: 1)Вл-27; 2) Вл-31; 3) Вм-27; 4) Со-20; 5) Су-18; 6) Су-19.

Висновки. Аналіз параметрів акустичного тензору µ_{il} зразків порід-колекторів Волино-Подільського регіону показав наявність анізотропії принаймні дворівневої природи пружних властивостей. Перший фактор анізотропії формується за рахунок речовинного складу, орієнтованого розташування зерен мінералів породі, тріщин, текстурних v особливостей. Він найбільш виражений V ломінуючій літологічній групі зразків пісковиках. Для пісковиків характерні найвищі діапазони зміни параметрів акустичної лінійності

L_µ, акустичної сланцюватості S_µ і інтегрального коефіцієнта пружної анізотропії Α_μ, а максимальні величини мають зразки 3 ромбічною симетрією акустичного тензору µіl. Причиною такої варіації є, у першу чергу, структурно-текстурні особливості порід (пружні константи породоутворюючої породи, величина і орієнтація тріщиних систем породи, наявність чи відсутність заповнювача тріщин тощо). Другий фактор анізотропії, зв'язаний переважно з умовами утворення породи. Із зростанням глибинності Н відзначається зміна домінуючого типу акустичної симетрії: з планального на аксіальний для зразків з ромбічною симетрією. Причому із зростанням глибинності Н і літостатичного тиску Р динаміка зміни параметрів акустичної лінійності L_и переважає над відповідною зміною акустичної сланцюватості S_u. Ця тенденція проявляється на фоні загального зростання A_u але тільки для проміжних глибин; подальше зростання глибинності Н приводить до зниження інтегрального коефіцієнта пружної анізотропії Аµ.

Література

- Александров К.С., Продайвода Г.Т. Анизотропия упругих свойств минералов и горных пород. – Н.: Изд. СО РАН, 2000. – 354 с.
- Вижва С.А. Геофізичний моніторинг небезпечних геологічних процесів. –К.:Обрії, 2004. 236 с.

АВТОМАТИЗИРОВАННАЯ СИСТЕМА МАТЕМАТИЧЕСКИХ РАСЧЕТОВ АКУСТИЧЕСКИХ И УПРУГИХ СВОЙСТВ ГОРНЫХ ПОРОД ЗА ДАННЫМИ УЛЬТРАЗВУКОВЫХ ИЗМЕРЕНИЙ

Г.Т. Продайвода, С.А. Выжва, Ю.А. Онанко, А.П. Онанко

Предлагается автоматизированная система численного анализа и визуализации данных ультразвуковых измерений параметров анизотропии скоростей упругих квазипродольной, "быстрой" и "медленной" квазипоперечных волн в горных породах. Исследованы эффекты параметров анизотропии породколлекторов по результатам ультразвуковых измерений для сложных напряженно-деформационных условий. Определен ромбический тип акустической анизотропии, который обусловлен текстурными особенностями, вещественным составом и сложноупорядоченной микротрещиноватостью пород.

Ключевые слова: автоматизированная система; акустическая анизотропия; скорости упругих волн; микротрещины.

THE AUTOMATED SYSTEM OF MATHEMATICAL CALCULATIONS OF ACOUSTIC AND ELASTIC PROPERTIES OF ROCKS FROM THE ULTRASOUND MEASUREMENTS

G. Prodayvoda, S. Vyzhva, Y. Onanko, A. Onanko

The automated system of numerical analysis and visualization of these ultrasonic measurings of anisotropy parameters of velocities of elastic quasi-longitudinal, "fast" and "slow" quasi-transversal waves in rocks is offered. The effects of anisotropy parameters of rock-collectors are explored from the ultrasound results measurements for the complicated tense-deformed conditions. Orthorhombic type of acoustic anisotropy is discovered for rock specimens this is determined with texture, composition and rocks compound-ordered microfracturing.

Key words: automatedsystem; acoustic anisotropy; elastic waves velocities; microcracks.

Київський національний університет, м. Київ