Автоматизація виробничих процесів у машинобудуванні та приладобудуванні. Вип. 45. 2011 135

УДК 631.362:532

Л.Н. ТИЩЕНКО, В.П. ОЛЬШАНСКИЙ, С.В. ОЛЬШАНСКИЙ Харьковский национальный технический университет сельского хозяйства имени П. Василенко

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ СЕПАРИРУЕМОЙ ЗЕРНОВОЙ СМЕСИ ПРИ НЕРАВНОМЕРНОМ ВРАЩЕНИИ ЦИЛИНДРИЧЕСКОГО РЕШЕТА

© Тищенко Л.Н., Ольшанский В.П., Ольшанский С.В., 2011

Запропоновано наближений спосіб розрахунку гармонічних коливань колової швидкості в кільцевому шарі вібророзрідженої зернової суміші, що виникають при нерівномірному обертанні вертикального циліндричного решета з періодичною зміною його кутової швидкості.

Proposed approximate method of calculating the harmonic vibrations circular velocity in circular layer vibrorliquefaction grain mixture, resulting in uneven rotation of the vertical cylindrical sieve with a periodic change in its angular velocity.

Постановка проблемы. Вибрации зерновой смеси существенно влияют на процессы сегрегации и просеивания зёрен на решётах. Для интенсификации этих процессов нужно знать закономерности распространения колебаний от виброрешёт в массив движущейся сыпучей среды. Их позволяет определить надлежащее математическое моделирование вибрационных полей в сепарируемых зерновых смесях. Поэтому разработка прикладных теорий распространения колебаний в движущемся зерновом слое относится к актуальным задачам.

Анализ последних исследований и публикаций. Интенсификация сегрегации зерновой смеси вследствие неравномерного вращения цилиндрического решета виброцентробежного сепаратора рассматривалась в [1,2]. Возникающие при этом гармонические колебания окружной скорости в смеси описаны в [3] с помощью функций Кельвина. К ним сводится решение одномерной краевой задачи гидродинамики в цилиндрической системе координат. Двумерное вихревое движение жидкости в гидропневмосепараторе также описывается функциями Бесселя [4]. Но учитывая то, что в производственных условиях вибросепарирования толщина зернового слоя мала по сравнению с радиусом цилиндрического решета, есть возможность упростить расчёт поля скоростей, сведя его к вычислениям элементарных функций. Этим обусловлена цель данной работы.

Цель работы. Целью работы является построение упрощённых формул для расчёта окружной проекции скорости движения виброожиженной зерновой смеси в цилиндрическом решете при гармонических пульсациях его угловой скорости вращения. Дополнительно ставится задача определения влияния просеивания частиц на решете на колебания окружной скорости в смеси.

Основная часть работы. Для решения поставленной задачи воспользуемся дифференциальным уравнением, полученным в работе [5] из системы Навье-Стокса, дополнив его инерционным членом:

$$\frac{\partial^2 u_j}{\partial r^2} + \frac{1-l}{r} \frac{\partial u_j}{\partial r} - \frac{1+l}{r^2} u_j - \frac{1}{v} \frac{\partial u_j}{\partial t} = 0.$$
(1)

В (1) u_j – окружная (тангенциальная) проекция скорости смеси; r – радиальная координата; t – время; n – эффективная кинематическая вибровязкость смеси.

Постоянная 1 определяется выражением:

$$l = eRu_{\Pi}n^{-1},$$

в котором e – коэффициент "живого сечения" решета; R – радиус решета; u_{Π} – радиальная проекция скорости просеивания зерен через отверстия в перфорированной рабочей поверхности.

Уравнение (1) решаем при граничных условиях:

$$\frac{\partial}{\partial r} \left(\frac{u_j}{r} \right)_{r=R_0} = 0; \qquad u_j \left(R \right) = w_1 R + R \sin(wt), \tag{2}$$

где w_1 – постоянная составляющая угловой скорости вращения решета; A, w – амплитуда и частота гармонических пульсаций угловой скорости; $R_0 = R - h$ – внутренний радиус зернового слоя толщиной h.

Разложим окружную скорость на два слагаемых:

$$u_{j}(r,t) = u_{1}(r) + u_{2}(r,t)$$
(3)

Учитывая (1) и (2), определение слагаемых сводим к решению двух краевых задач:

$$\frac{du_1}{dr^2} + \frac{1-l}{r}\frac{du_1}{dr} - \frac{1+l}{r^2}u_1 = 0;$$
(4)

$$\frac{d}{dr}\left(\frac{u_1}{r}\right)_{r=R_0} = 0; \quad u_1(R) = w_1R \tag{5}$$

И

$$\frac{\partial^2 u_2}{\partial r^2} + \frac{1-l}{r} \frac{\partial u_2}{\partial r} - \frac{1+l}{r^2} u_2 - \frac{1}{n} \frac{\partial u_2}{\partial t} = 0;$$
(6)

$$\frac{\partial}{\partial r} \left(\frac{u_2}{r} \right)_{r=R_0} = 0; \quad u_2(R) = R \sin(wt).$$
⁽⁷⁾

Решение первой из них получено в [5] и представлено в виде:

$$u_1(r) = c_1 r^{-1} + c_2 r^{1+1} , (8)$$

где
$$c_1 = w_1 R^2 \frac{I R_0^{2+1}}{2R^{2+1} + I R_0^{2+1}}; c_2 = w_1 R^2 \frac{2}{2R^{2+1} + I R_0^{2+1}}.$$

С целью апробации предложенного приближённого метода расчёта, дополним (8) приближённым решением. Для этого "заморозим" в (4) переменные величины r^{-1} и r^{-2} , заменив их средними значениями:

$$\frac{1}{r} \approx \frac{1}{r_*} = \frac{2}{R_0 + R}; \quad \frac{1}{r^2} \approx \frac{1}{r_*^2} = \frac{4}{(R_0 + R)^2}.$$

Вместо (4) будем решать дифференциальное уравнение с постоянными коэффициентами:

$$\frac{d^2 u_1}{dr^2} + \frac{1-l}{r_*} \frac{du_1}{dr} - \frac{1+l}{r_*^2} u_1 = 0$$
(9)

при граничных условиях (5).

Определив корни k_1 и k_2 характеристического уравнения:

Автоматизація виробничих процесів у машинобудуванні та приладобудуванні. Вип. 45. 2011 137

$$k^{2} + \frac{1-l}{r_{*}}k - \frac{1+l}{r_{*}^{2}} = 0,$$

получаем общее решение (9):

$$u_1(r) = c_3 \exp(k_1 x) + c_4 \exp(k_2 x), \tag{10}$$

в котором $k_{1,2} = -\frac{1-l}{2r_*} \pm \frac{1}{2r_*} \sqrt{l^2 + 2l + 5}$; $\mathbf{x} = r - R_0$; c_3, c_4 – произвольные постоянные. Их

определяем с помощью (5). Находим:

$$c_{3} = -w_{1}R \frac{R_{0}k_{2} - 1}{f(h)}; \qquad c_{4} = w_{1}R \frac{R_{0}k_{1} - 1}{f(h)};$$

$$f(h) = (R_{0}k_{1} - 1)\exp(k_{2}h) - (R_{0}k_{2} - 1)\exp(k_{1}h).$$
(11)

Наличие формулы (8) позволяет численно определить погрешности приближённого решения (10), (11) при заданных параметрах расчёта.

Решение краевой задачи (6), (7) ищем в виде:

$$u_2(r,t) = \operatorname{Im}[w(r)\exp(iwt)], \qquad (12)$$

где $i = \sqrt{-1}$; w(r) – комплексная функция вещественного аргумента, которая удовлетворяет уравнению:

$$\frac{d^2 w}{dr^2} + \frac{1-l}{r} \frac{dw}{dr} - \left(\frac{1+l}{r^2} + \frac{iw}{n}\right)w = 0$$
(13)

и граничным условиям:

$$\operatorname{Re} w(R) = AR; \ \operatorname{Im} w(R) = 0; \ \operatorname{Re} \frac{dw}{dr}\Big|_{r=R_0} = \operatorname{Im} \frac{dw}{dr}\Big|_{r=R_0} = 0.$$
(14)

Решение этой задачи выражается через функции Бесселя комплексного аргумента. При l = 0 оно построено в [3].

Чтобы упростить математическую модель, как прежде "заморозим" в (13) переменные r^{-1} и r^{-2} , заменив их средними значениями. Далее вместо (13) будем решать уравнение с постоянными коэффициентами:

$$\frac{d^2 w}{dr^2} + \frac{1-l}{r_*} \frac{dw}{dr} - \left(\frac{1+l}{r_*^2} + \frac{iw}{n}\right) w = 0.$$
(15)

Его характеристическое уравнение

$$g^{2} + \frac{1-l}{r_{*}}g - \left(\frac{1+l}{r_{*}^{2}} + \frac{iw}{n}\right) = 0$$

имеет комплексные корни:

$$g_{1,2} = a_{1,2} \pm ib$$
,

где
$$a_{1,2} = -\frac{1-1}{2r_*} \pm \frac{1}{\sqrt{2}} \sqrt{\sqrt{\left(\frac{l^2+2l+5}{4r_*^2}\right)^2 + \frac{w^2}{n^2} + \frac{l^2+2l+5}{4r_*^2}};$$

 $b = \frac{1}{\sqrt{2}} \sqrt{\sqrt{\left(\frac{l^2+2l+5}{4r_*^2}\right)^2 + \frac{w^2}{n^2} - \frac{l^2+2l+5}{4r_*^2}}.$

Для таких корней общим решением (15) является:

$$w(r) = (b_1 + ib_2) \exp[(a_1 + ib)x] + (b_3 + ib_4) \exp[(a_2 - ib)x].$$
(16)

В (16) b_1, b_2, b_3, b_4 – вещественные постоянные.

Подставив (16) в (14), получаем систему четырёх уравнений, из которой находим:

$$b_{1} = \frac{ARa_{1}}{a_{1}^{2} + a_{2}^{2}} \exp(-a_{2}h); \ b_{2} = \frac{ARa_{2}}{a_{1}^{2} + a_{2}^{2}} \exp(-a_{2}h);$$

$$b_{3} = d_{1}b_{1} + d_{2}b_{2}; \ b_{4} = -d_{2}b_{1} + d_{1}b_{2};$$

$$a_{1} = \{\exp[(a_{1} - a_{2})h] + d_{1}\}\cos(bh) - d_{2}\sin(bh);$$

$$a_{2} = \{d_{1} - \exp[(a_{1} - a_{2})h]\}\sin(bh) + d_{2}\cos(bh);$$

$$d_{1} = \frac{(s - a_{1})(a_{2} - s) + b^{2}}{(a_{2} - s)^{2} + b^{2}}; \ d_{2} = \frac{b(a_{1} + a_{2} - 2s)}{(a_{2} - s)^{2} + b^{2}}; \ s = \frac{1}{R_{0}}$$

Учитывая найденные b_j , $j = \overline{1;4}$, а также (3), (8), (12) и (16), получаем формулу окружной скорости движения смеси:

$$u_j(r,t) = c_1 r^{-1} + c_2 r^{1+1} + B_1(r) \sin(wt) + B_2(r) \cos(wt).$$
(17)

В ней

$$B_1(r) = \exp(a_1 x)[b_1 \cos(bx) - b_2 \sin(bx)] + \exp(a_2 x)[b_3 \cos(bx) + b_4 \sin(bx)];$$

$$B_2(r) = \exp(a_1 x)[b_1 \sin(bx) + b_2 \cos(bx)] + \exp(a_2 x)[b_4 \cos(bx) - b_3 \sin(bx)].$$

Таким образом, в результате упрощения дифференциальных уравнений движения, расчёт изменений окружной скорости в смеси по *r* и *t* сведён к вычислению элементарных функций.

Проанализируем результаты расчётов, к которым приводит изложенный приближённый метод. В качестве исходных данных берём: $r = 750 \text{ кг/m}^3$; rn = 0,66 Па·с; h = 0,01 м; R = 0,3075 м; e = 0,4; $w_1 = 11,77 \text{ c}^{-1}$; $A = 1,2 \text{ c}^{-1}$, $w = 2w_1$. Меняем в исходных данных значения u_{II} .

Результаты вычисления $u_1(r)$ для трёх значений u_{II} по формулам (8) и (10) сведены в табл. 1.

Таблица 1

-							
xh^{-1}	<i>и</i> ₁ (<i>r</i>), м/с по (8)			<i>u</i> ₁ (<i>r</i>), м/с по (10)			
	$u_{\Pi} = 0$	$u_{\Pi} = 10^{-2}$, м/с	$u_{\Pi} = 2 \cdot 10^{-2}$, м/с	$u_{\Pi} = 0$	$u_{\Pi} = 10^{-2}, \text{m/c}$	$u_{\Pi} = 2 \cdot 10^{-2}$, m/c	
0,0	3,5016	3,4963	3,4908	3,5016	3,4963	3,4909	
0,2	3,5251	3,5200	3,5147	3,5251	3,5200	3,5148	
0,4	3,5487	3,5442	3,5395	3,5487	3,5442	3,5396	
0,6	3,5722	3,5688	3,5652	3,5722	3,5688	3,5652	
0,8	3,5957	3,5938	3,5918	3,5957	3,5938	3,5918	
1,0	3,6193	3,6193	3,6193	3,6193	3,6193	3,6193	

Значения $u_1(r)$, вычисленные по двум формулам

Сравнение численных результатов показывает, что замена переменных коэффициентов их средними значениями приводит к малым погрешностям при вычислении $u_1(r)$.

Вычисленные по формуле (17) окружные скорости в различные моменты времени при разных *r* и $u_{\Pi} = 0$ представлены в табл. 2.

Таблица 2

0							
Wt	$u_j(r,t), M/c$			Wt	<i>uj</i> (<i>r</i> , <i>t</i>), м/с		
р	$xh^{-1} = 1/4$	$xh^{-1} = 1/2$	$xh^{-1} = 1$	р	$xh^{-1} = 1/4$	$xh^{-1} = 1/2$	$xh^{-1}=1$
0,00	3,670	3,752	3,988	1,00	3,392	3,369	3,250
0,25	3,774	3,818	3,880	1,25	3,288	3,303	3,358
0,50	3,736	3,733	3,619	1,50	3,326	3,387	3,619
0,75	3,578	3,547	3,558	1,75	3,484	3,573	3,880

Значения $u_i(r,t)$, при различных t и r

Для сравнения на рисунке, который заимствован из [3], представлены графики $u_j(r,t)$, рассчитанные с помощью точного решения краевой задачи в функциях Кельвина. Числа в табл. 2 попадают точками на графики на рисунке, что подтверждает хорошую точность рассматриваемого приближённого метода, когда $h \ll R$.

 $u_{\alpha}(r,t), M/c$

Зависимости тангенциальной проекции скорости от времени для различных $r: 1,2,3-r=R; R_0+0,5h; R_0+0,25h$ при $w=2w_1$

Значения скорости, к которым приводит формула (17) при учёте просеивания смеси через отверстия в решете, записаны в табл. З. Расчёт выполнен при $u_{\Pi} = 0,02$ м/с и прежних остальных исходных данных.

Таблица З

5							
Wt	$u_j(r)$, <i>t</i>), м/с	wt	<i>uj</i> (<i>r</i> , <i>t</i>), м/с			
р	$xh^{-1} = 1/4$	$xh^{-1} = 1/2$	p	$xh^{-1} = 1/4$	$xh^{-1} = 1/2$		
0,00	3,653	3,738	1,00	3,388	3,367		
0,25	3,758	3,805	1,25	3,284	3,299		
0,50	3,724	3,724	1,50	3,318	3,380		
0,75	3,571	3,543	1,75	3,471	3,562		

Значения $u_i(r,t)$, при $u_{II} = 0.02$ м/с

Числа в табл. З незначительно отличаются от соответствующих чисел в табл. 2, т.е. при небольших скоростях просеивания проходовой фракции оно мало влияет на колебания окружной скорости, вызванные неравномерным вращением решета. При $u_{\Pi} > 0$ возникает кориолисова сила, которая несколько уменьшает окружную скорость, но этот эффект нивелируется уменьшением

толщины кольцевого слоя зерновой смеси. Поэтому в технических расчётах можно полагать $u_{II} = 0$.

Выводы

- Изложенный приближённый способ без ощутимых погрешностей существенно упрощает расчёт колебаний окружной скорости в кольцевом слое зерновой смеси при неравномерном вращении цилиндрического решета.
- 2. Он позволяет вычислять окружную скорость в смеси с учётом просеивания её через отверстия в перфорированной поверхности виброрешета.

1. Бок Н.Б. Интенсификация сепарирования зерна цилиндрическими решётами / Н.Б. Бок // Земледельческая механика: Сб. науч. тр. – М., 1968. – Т. 109. – С. 24–27. 2. Шуляков А.Г. Некоторые вопросы просеивающей способности цилиндрического решета, совершающего крутильные колебания в плоскости своего вращения / А.Г. Шуляков // Труды ЧИМЭСХ. – Челябинск, 1972. – Вып. 69. – С.75–80. 3. Ольшанский В.П. Колебания зерновой смеси во вращающемся цилиндрическом решете, с периодическим изменением угловой скорости / В.П. Ольшанский, С.В. Ольшанский // Вісник ХНТУСГ: Технічний сервіс АПК, техніка та технології у сільськогосподарському машинобудуванні. – Харків: ХНТУСГ, 2010. – Вип. 106. – С. 169–175. 4. Пастушенко С.І. Математичне дослідження вихрової гідродинаміки гідропневмосепаратора / С.І. Пастушенко, М.М. Огієнко // Вісник Дніпропетровського державного аграрного університету: Сучасні проблеми землеробської механіки. – Дніпропетровськ: ДДАУ, 2009. – №2. – С. 230–235. 5. Тищенко Л.Н. К расчёту движения зерновой смеси по вертикальному цилиндрическому решету вибросепаратора / Л.Н. Тищенко, В.П. Ольшанский, С.В. Ольшанский // Вібрації в техніці та технологіях, 2009. – №2 (54). – С. 50–55.

УДК 539.3.

Є.В. ХАРЧЕНКО, М.І. ВОЙТОВИЧ, Р.А. КОВАЛЬЧУК

Національний університет "Львівська політехніка"

ТЕРМОНАПРУЖЕНИЙ СТАН СИСТЕМИ ЦИЛІНДРИЧНА ОБОЛОНКА–СТРИЖНІ–ПЛАСТИНКА

© Харченко С.В., Войтович М.І., Ковальчук Р.А., 2011

Досліджено термонапружений стан системи циліндрична оболонка-стрижні-пластинка, нагрівання якої здійснюється шляхом конвективного теплообміну з зовнішнім і внутрішнім середовищами; при цьому враховується реальна геометрія вузла з'єднання.

The investigational termonapruzheniy state of the system is a cylinder shell-strizhni-plastinka heating of which is carried out by a konvektivnogo heat exchange with external and internal environments; the real geometry of knot of connection is thus taken into account.

Вступ. Обумовлений різними силовими факторами напружений стан деформівних систем, елементами яких є оболонки (пластинки) і стрижні, досліджували багато авторів [1–4]. Значно менше вивчена робота систем, які складаються із оболонок (пластин) і стрижнів в умовах нагрівання. Очевидно, що достатньо повне дослідження термонапруженого стану вимагає розв'язування